Supporting Information for ## A Bulk-Heterostructure Nanocomposite Electrolyte of Ce_{0.8}Sm_{0.2}O_{2-δ}- ## SrTiO₃ for Low-Temperature Solid Oxide Fuel Cells Yixiao Cai^{1, 2}, Yang Chen¹, Muhammad Akbar², Bin Jin², Zhengwen Tu², Naveed Mushtaq², Baoyuan Wang², Xiangyang Qu¹, Chen Xia^{2, *}, Yizhong Huang^{3, *} ¹State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance Fibers & Products, Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China ²Key Laboratory of Ferro and Piezoelectric Materials and Devices of Hubei Province, Faculty of Physics and Electronic Science, Hubei University, Wuhan, Hubei 430062, P. R. China ³School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore *Corresponding authors. E-mail: chenxia@hubu.edu.cn (Chen Xia); yzhuang@ntu.edu.sg (Yizhong Huang) ## **Supplementary Figures** **Fig. S1** TEM images of 4SDC-6STO at (**a**) low-magnification and (**b**) high-magnification; (**c**) EDS of the 4SDC-6STO sample acquired based on the high-magnification TEM Two typical HR-TEM images and the corresponding EDS result of 4SDC-6STO, showing the grain size and distribution of the sample. The grains of the sample showed faceted and regular shapes, with uniform distribution and compact contacts. A plenty of hetero-interfaces formed between the grains of SDC and STO were also observed. **Fig. S2** Stability demonstration of SDC and 4SDC-6STO SOFCs at a fixed current density of 100 mA cm $^{-2}$ at 500 °C The stability demonstration of SDC- and 4SDC-6STO-based SOFCs at a fixed current density of 100 mA cm⁻² at 500 °C for ~18 h. The working voltages for the two single cells display a degradation during the initial period and gradually approach a stable state. The SDC-based cell shows a constant working voltage of 0.75 V, while 0.84 V for 4SDC-6STO-based cell. Fig. S3 H₂-permeation current test of the NCAL-Ni/4SDC-6STO/NCAL-Ni cell The H_2 -permeation current measurement was performed on an NCAL-Ni/4SDC-6STO/NCAL-Ni cell to check whether there is fuel penetration into and through the electrolyte layer. The cell was kept in the oven at 550 °C, whereafter H_2 and N_2 (both with 0.05 Mpa pressure) were provided to both surfaces of the cell with high flow rate gas flow (200 mL min⁻¹) for 2 h, until the OCV decrease to below 0.2 V. Then an external potential of 0.4 V was provided to the cell by source-meter (Keithley 2400) and the current-time curve was recorded, which can directly reflect the permeation situation of the electrolyte. The current density is extremely low as \sim 0.023 μ A cm⁻², certifying there is barely penetration of H_2 into and through the cell. This authenticates that the electrolyte is gas-tight. Fig. S4 Temperature dependence of the conductivity for STO sample at difference oxygen partial pressure pO_2 The temperature dependence of the electrical conductivity for the STO sample at three different oxygen partial pressure (pO₂) was measured at 400-600 °C by 4-probe DC measurement. The STO sample exhibits considerable electronic conductivity at 400-600 °C in reducing condition (pO₂= 10^{-1} to 10^{-6} atm). **Fig. S5** Bandgap values for the SDC and STO sample treated in H₂ derived from UV-vis absorption spectra The UV-vis absorption spectra of the SDC and STO sample treated in H₂ at 550 °C were received by a UV3600 spectrometer (MIOSTECHPTY Ltd.). Based on the results, the bandgap can be obtained by using the Kubelka-Munk function, and the bandgaps of SDC and STO are 3.25 and 3.7 eV, respectively.